example and not limitation, operating systems, application programs, data files, directory structures, computer-executable instructions, and the like. [0040] Output components or devices, such as display device 502, may be coupled to computing device 501, typically via an interface such as a display adapter 511. Output device 502 may be a liquid crystal display ("LCD"). Other example output devices may include printers, audio outputs, voice outputs, cathode ray tube ("CRT") displays, tactile devices or other sensory output mechanisms, or the like. Output devices may enable computing device 501 to interact with human operators or other machines, systems, computing environments, or the like. A user may interface with computing environment 500 via any number of different I/O devices 503 such as a touch pad, buttons, keyboard, mouse, joystick, game pad, data port, and the like. These and other I/O devices may be coupled to processor 507 via I/O interfaces 512 which may be coupled to system bus 508, and/or may be coupled by other interfaces and bus structures, such as a parallel port, game port, universal serial bus ("USB"), fire wire, infrared ("IR") port, and the like. [0041] Computing device 501 may operate in a networked environment via communications connections to one or more remote computing devices through one or more cellular networks, wireless networks, local area networks ("LAN"), wide area networks ("WAN"), storage area networks ("SAN"), the Internet, radio links, optical links and the like. Computing device 501 may be coupled to a network via network adapter 513 or the like, or, alternatively, via a modem, digital subscriber line ("DSL") link, integrated services digital network ("ISDN") link, Internet link, wireless link, or the like. [0042] Communications connection 514, such as a network connection, typically provides a coupling to communications media, such as a network. Communications media typically provide computer-readable and computer-executable instructions, data structures, files, program modules and other data using a modulated data signal, such as a carrier wave or other transport mechanism. The term "modulated data signal" typically means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communications media may include wired media, such as a wired network or direct-wired connection or the like, and wireless media, such as acoustic, radio frequency, infrared, or other wireless communications mechanisms. [0043] Power source 590, such as a battery or a power supply, typically provides power for portions or all of computing environment 500. In the case of the computing environment 500 being a mobile device or portable device or the like, power source 590 may be a battery. Alternatively, in the case computing environment 500 is a computer or server or the like, power source 590 may be a power supply designed to connect to an alternating current ("AC") source, such as via a wall outlet. [0044] Some mobile devices may not include many of the components described in connection with FIG. 5. For example, an electronic badge may be comprised of a coil of wire along with a simple processing unit 507 or the like, the coil configured to act as power source 590 when in proximity to a card reader device or the like. Such a coil may also be configure to act as an antenna coupled to the processing unit 507 or the like, the coil antenna capable of providing a form of communication between the electronic badge and the card reader device. Such communication may not involve net- working, but may alternatively be general or special purpose communications via telemetry, point-to-point, RF, IR, audio, or other means. An electronic card may not include display 502, I/O device 503, or many of the other components described in connection with FIG. 5. Other mobile devices that may not include many of the components described in connection with FIG. 5, by way of example and not limitation, include electronic bracelets, electronic tags, implantable devices, and the like. [0045] Those skilled in the art will realize that storage devices utilized to provide computer-readable and computer-executable instructions and data can be distributed over a network. For example, a remote computer or storage device may store computer-readable and computer-executable instructions in the form of software applications and data. A local computer may access the remote computer or storage device via the network and download part or all of a software application or data and may execute any computer-executable instructions. Alternatively, the local computer may download pieces of the software or data as needed, or distributively process the software by executing some of the instructions at the local computer and some at remote computers and/or devices. [0046] Those skilled in the art will also realize that, by utilizing conventional techniques, all or portions of the software's computer-executable instructions may be carried out by a dedicated electronic circuit such as a digital signal processor ("DSP"), programmable logic array ("PLA"), discrete circuits, and the like. The term "electronic apparatus" may include computing devices or consumer electronic devices comprising any software, firmware or the like, or electronic devices or circuits comprising no software, firmware or the like. [0047] The term "firmware" typically refers to executable instructions, code or data maintained in an electronic device such as a ROM. The term "software" generally refers to executable instructions, code, data, applications, programs, or the like maintained in or on any form of computer-readable media. The term "computer-readable media" typically refers to system memory, storage devices and their associated media, and the like. [0048] In view of the many possible embodiments to which the principles of the present invention and the forgoing examples may be applied, it should be recognized that the examples described herein are meant to be illustrative only and should not be taken as limiting the scope of the present invention. Therefore, the invention as described herein contemplates all such embodiments as may come within the scope of the following claims and any equivalents thereto. 1. A method for recognizing a device manners policy ("DMP") and configuring a device for compliance with the DMP, the method comprising: recognizing the DMP; and determining an applicability of the DMP to the device and, if applicable: identifying any relevant device manners specified in the DMP, and configuring the device for compliance with the any relevant device manners.